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Abstract—This paper deals with a generalized mathematical model of a controlled belt con-
veyor with a variable angle between the horizontal and belt planes. The model is defined
using a system of four nonlinear differential equations with switching. It includes the linear
movement of the conveyor belt, changes in the system momentum, axial and linear friction,
the damping of the horizontal position of the conveyor, and the factors of smooth loading and
instant unloading of cargo. Stabilization conditions are established for this model considering
simulation components related to the nature of loading and unloading modes of the conveyor
belt. A PID controller, a neuro-PID controller, and neural network controllers of recurrent
and non-recurrent types are designed to control the angular position of the conveyor. Linear
velocity control is implemented by introducing a sliding mode. Computational experiments are
carried out and given an interpretation. The performance of the controllers mentioned above
is comparatively analyzed.
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1. INTRODUCTION

The design, automation, and monitoring of conveyor systems are topical lines of research [1–11].
The range of important problems includes, e.g., stabilization of conveyor traction, monitoring of
dynamic load of conveyor belts, optimization of conveyor control parameters, design of intelligent
conveyor systems, and creation of multifunctional continuous transport systems. The solution
of these problems requires using methods of control theory, optimization theory, and artificial
intelligence tools.

The mathematical modeling of controlled technical systems, including conveyor transport sys-
tems, involves such artificial intelligence tools as fuzzy control, artificial neural networks, and
machine learning [4, 12–20]. For example, the construction of a fuzzy tracking system for the state
of a conveyor belt was discussed in [16]. Several aspects of conveyor control optimization using
artificial neural networks were studied in [17]. The issues of applying machine learning models for
the high-precision classification of rubber conveyor belt loads were considered in [18].

As is known, conveyor systems are characterized by the switching mode of operation. When
describing and studying dynamic models of conveyor transport, it seems reasonable to use the
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concepts and methods of the theory of switched systems [21–23] and design methods of different
controllers, including PID controllers [24, 25]. The behavior of switched systems in some important
cases is studied by introducing sliding modes [26]. The development of computer models of switched
systems was considered, e.g., in [23]. An important problem is to analyze the stability of switched
systems [27–29]. Numerical optimization algorithms related to nature-inspired methods can be used
to investigate switched systems; note differential evolution as a popular method of this class [30, 31].
Reinforcement learning [32] finds application in the design of controlled systems with switching.
The computer modeling of switched systems is supported by high-level languages; among them, we
mention Python and Julia [33, 34] with appropriate mathematical libraries.

The control of dynamic systems based on the PID controller is widely known and has been
considered in many publications, particularly in [35]. There exist various optimal tuning algorithms
for the PID controller [25, 36, 37]. A new approach to tuning and optimizing PID controller
parameters was proposed in [25] based on reducing the original problem to an optimization problem.
Within this approach, the performance of the controller is evaluated by a quadratic criterion of the
system output. The PID controller is tuned against uncertainty in the initial conditions to make
the system output uniformly small while additionally ensuring a given degree of stability of the
closed-loop system. The performance of PI and PID controllers in the integral saturation mode
was analyzed in [38]. (This mode arises when imposing constraints on the controller output.) The
forms of PID controllers, as well as algorithms of their automatic tuning and adaptive control, were
surveyed in [24]. The issues of tuning the parameters of the PID controller of a belt conveyor for
coal transportation were studied in [39] using a neural network; more precisely, a neural network
model of torque control was constructed therein.

It is interesting to compare the performance of the PID controller and the neural network
controller under the same conditions [40]. The differential evolution method from the Scipy mathe-
matical library has shown quite effective results for tuning the PID controller coefficients. Methods
for investigating a belt conveyor model based on the design of PID controllers and neural network
controllers were proposed in [40]. The authors considered a simplified belt conveyor model without
axial drag and damping as well as without smooth cargo loading and unloading.

The modified mathematical model of the belt conveyor developed in [41] includes the axial drag
and dynamic change of the angle between the horizontal and conveyor belt planes. The neural
network controller and PID controller were designed for the model, and optimal control problems
were solved using these controllers. The results of computer experiments with trajectory dynamics
were presented. Control laws for stabilizing the elevation angle of the conveyor belt were designed
under the variable weight of cargo and the change in the center of gravity of the conveyor. The
adaptability of neural network control and PID control to a linear increase in axial drag was studied.

A neural network controller for a belt conveyor model with a dynamic change of the angle be-
tween the horizontal and conveyor belt planes, the factors of smooth loading and instantaneous
unloading of cargoes, and without axial drag was designed in [42]. The results of computer exper-
iments of this model were compared with those of the model considered in [41].

The models described in [40–42] can be refined in the direction of analyzing the effect of var-
ious factors; among them, we note the impact of transients on system dynamics when changing
the modes and nature of loading of the conveyor. Other directions to improve the models in-
clude the analysis of various dissipative effects and conveyor position regulation based on damping
subsystems.

This paper consists of seven sections. Section 2 describes and analyzes the generalized model of
a controlled belt conveyor. An optimal control problem is formulated for belt movement and the
angular position of the conveyor; in addition, stabilization conditions are established for the model.
In Section 3, we design a PID controller, a neuro-PID controller, and neural network controllers
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MODELING AND STABILIZATION OF CONVEYOR TRANSPORT SYSTEMS 1115

of recurrent and nonrecurrent types. Linear velocity control is implemented by introducing a
sliding mode. Section 4 summarizes the results of computational experiments and provides an
interpretation of the trajectory dynamics based on different types of controllers. In Section 5, we
compare the performance of the designed controllers and present the corresponding measurement
results. The results of this paper, as well as the qualitative effects of the application of intelligent
control, are discussed in Section 6.

2. DESCRIPTION AND ANALYSIS OF THE GENERALIZED
CONTROLLED BELT CONVEYOR MODEL

Consider the problem of designing a control system for a belt conveyor with a dynamically
varying elevation angle of the belt. The state space of the system model is formed by the following
coordinates: the linear movement of the belt, the system momentum, and the elevation angle above
the plane. Objects of different weights are loaded to and unloaded from the moving conveyor at
random time instants, which can affect its motion characteristics. We neglect the belt stretching and
also suppose negligibly small the influence of the momentum on the change of the angular velocity.
It is required to ensure the stationary mode while maintaining the linear velocity and a constant
elevation angle in the process of conveyor operation. In view of these conditions, the mathematical
model of the belt conveyor control system can be represented as the system of differential equations

ẋ =
p

m
,

ṗ = up(t)− k
p

m
− (m−m0)g sin(α),

α̇ = ω,

ω̇ =
uα(t)− lω

mcε2
−

g cos(α)

ε
+

1

(α+ ε0
g

1

τ )τ
,

up, uα ∈ U, ε ∈ E, m ∈ M,

(1)

with the following notations: x is the movement of the conveyor belt; p is the momentum of the
system; α is the elevation angle of the conveyor relative to the zero position; ω is the angular
velocity of the conveyor; g is the gravitational acceleration; m0 is the weight of the conveyor belt;
m is the total weight of the system; up(t) is the conveyor traction control function; uα(t) is the
belt elevation angle control function; ε is the position of the conveyor’s center of gravity relative
to the bottom roller; c is the coefficient determining the conveyor’s moment of inertia; k is the
rolling friction coefficient; l is the axial drag coefficient; ε0 is the averaged position of the center
of gravity; finally, τ is the damping stiffness coefficient. The sets M , E, and U include the values
of the weights of cargo, the center of gravity, and the controls, respectively. Operation modes in
model (1) are changed at the instants of choosing the corresponding values m1 = m−m0 and ε in
accordance with a definite rule that specifies the switching scheme.

A switching scheme was developed to choose the values of ε and m1. This scheme implements
simulation modeling of cargo loading and unloading at arbitrary time instants. We propose to
calculate particular values of the vectors (ε,m1) based on a simulation algorithm. The change
of cargo weights on the belt is determined by weight-switching algorithms of two types, namely,
1) instantaneous loading with instantaneous unloading and 2) smooth loading with instantaneous
unloading. The physical meaning of smooth loading consists in the gradual transfer of kinetic
energy from the belt to the load. In the case of instantaneous loading, this effect is not considered.
The loading and unloading modes were described in [42].
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Definition 1. The controlled system (1) that models the conveyor belt motion with switching is
said to be locally stabilizable if, for t ∈ (t1,∞), any trajectory of (1) lies inside some tube in the
multidimensional state space.

Definition 2. The system state is the vector θ = (ẋ, α, ω) of the state parameters of system (1).

Definition 3. The target state λ of system (1) is an equilibrium λ = (s̄, ᾱ, 0) that system (1)
must reach in the control process.

Here we consider a stabilization problem for system (1) in which it is required: a) to ensure the
transition from an initial state λ0 to the target state λ in the minimum time; b) to maintain the
system state in a small neighborhood ε of the target state λ as t → ∞.

As a measure of stabilizability, we can choose the norm of the difference between the target
state vector λ and the partial state vector of system (1). With this measure of stabilizability, under
some condition that can be interpreted as error boundedness on an infinite time interval, it is not
difficult to formulate a sufficient condition for the local stabilizability of system (1). To justify
this sufficient condition, we use the definitions of local stabilization and the target state as well as
the properties of the state variables of system (1) that are significant for the dynamics of the belt
conveyor model with a variable elevation angle (namely, the variables ẋ, α, and ω).

Further, let the error in system (1) be σ = λ− θ. In view of this error, we assume the existence
of feedback control functionals u1, u2, ζ1, and ζ2 such that

up(t) = u1(ζ1(σ(t))), uα(t) = u2(ζ2(σ(t))). (2)

Theorem 1. Let t ∈ [t1,∞). If, under the control functions (2),

∀θ(t) : t ∈ [t1,∞) ∃δ : ‖σ‖ ∈ [0, δ), (3)

then system (1) is locally stabilizable.

Indeed, condition (3) holding for any t defines some δ-neighborhood of the target state in which
the representative point of the trajectory can be located. The set of such neighborhoods geomet-
rically forms a tube. Thus, system (1) is locally stabilizable.

The concept of local stabilization corresponds to the cases of “partial” stabilization of the con-
veyor system when there exist trajectories with non-decaying oscillations or trajectories “parallel”
to λ. In these cases, the control problem has only partial solutions.

In the cases of full stabilization, system (1) always gives an adequate response to perturbations,
and the rate of stabilization of the system under the perturbations is proportional to the deviation
from the center of the tube. From a formal point of view, the derivative of the error is proportional
to the magnitude of the error itself in the chosen metric. The above stabilization condition is more
stringent, which allows us to conceptualize the global stabilizability of the system.

Definition 4. System (1) is said to be globally stabilizable if, on some time interval t ∈ (t0, tk),
the error tends to zero under constant perturbations (i.e., m1 = const).

Due to the simulation component of this model, the system in which the above conditions hold
in the absence of time-isolated perturbations can be considered globally stabilizable. We have the
following result.

Theorem 2. Let system (1) with (2) satisfy condition (3). If, under the condition dm1

dt
= 0,

∀θ(t) : t ∈ [t1,∞) ∃δ1(t) 6 δ : ‖σ‖ ∈ (0, δ1(t)), δ̇1(t) < 0, (4)

then system (1) is globally stabilizable.
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Indeed, if conditions (3) and (4) hold under a constant weight of cargo, the trajectory will be
isolated in a continuously tapering tube until fulfilling σ = ~0, which means the absence of an error.
To ensure optimal control of system (1), we have to add optimality criteria to the conditions of
Theorems 1 and 2.

In the sequel, two optimality criteria will be considered for angular position stabilization, namely,
complex and simplified ones. The complex optimality criterion (with respect to the two state
variables α, ω) has the form

C1 =

t2∫

t1

‖S − (α, ω)‖dt, S = (ᾱ, 0). (5)

We begin with the problem of minimizing the criterion (5) considering the angular position and
angular velocity deviation errors. For the system stabilized in the global sense, the criterion (5)
can be reduced to

C2 =

t2∫

t1

|ᾱ− α|dt. (6)

Second, we study the problem of minimizing the criterion (6) considering the angular position
deviation error. Reduction of the criterion (5) is associated with the proportional dependence of
the angular position and angular velocity deviation errors under the conditions of Theorem 2.

3. CONTROLLER DESIGN

The conveyor motion is regulated using controllers for the linear velocity and elevation angle.
A sliding mode controller is applied to regulate the linear velocity:

If ẋ > s̄, then up = −ū; otherwise, up = ū.

Here s is a given linear velocity and ū is a fixed control value.

According to preliminary computational experiments, implementing angular position control by
introducing a sliding mode does not stabilize system (1). In this regard, we design and compare the
following types of controllers for regulating the angular position of system (1): a PID controller, a
neural network controller, a recurrent neural network controller, and a recurrent neuro-PID con-
troller. The PID controller and the neural network controller have the standard structure [40–42].
The structure of the recurrent controllers is presented in Figs. 1 and 2.

Figure 1 shows the diagram of the recurrent neural network controller with the 3-4-1 topology
and tangential activation functions in the hidden and output layers. The values of the error,
conveyor angular velocity, and neural network output with the unit delay are supplied to the input.
Figure 2 shows the diagram of the recurrent neuro-PID controller: a neural network with the 3-4-3
topology is used to tune the PID controller coefficients.

The following notations are adopted in Figs. 1 and 2: e is the value of the angular position
error; ė is the time derivative of the angular position error; uα(t) is the control value; ∆i is the
unit delay operator. The output values u have different ranges: u ∈ (−1, 1) for the neural network
controller with the tangent activation function, and u ∈ (0,∞) for the neuro-PID controller. Due
to this difference, we apply a gain and filtering loop to obtain the value uα (t). For the recurrent
neural network controller, the tangent activation function symmetric about the origin is applied.
The recurrent neuro-PID controller implements the DreLU and reLU activation functions in the
hidden and output layer, respectively. These activation functions are conventional in neural network
modeling [17, 18].

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024
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Fig. 1. The diagram of the recurrent neural network controller.

Fig. 2. The diagram of the recurrent neuro-PID controller.

The control period parameter ∆t is set in each angular position control algorithm with a particu-
lar controller. The trajectory dynamics of system (1) changes depending on ∆t. The control period
∆t > 0.05 is characterized by a decrease in the uniformity of the belt angular position trajectories
and a “jagged” plot of the linear velocity.

Note that the angle and linear velocity controllers may operate with different periods. The
operation of controllers with different periods is due to the need to minimize the number of switching
operations and save equipment life as well as to control implementability in practice. Different
control periods are associated with inertia constraints. It is interesting to study a conveyor system
model considering the admissible inertia of the conveyor drive.

When the control period decreases and the maximum differentiation step of the ODE solver is
reduced accordingly, we observe a more smooth character of the linear velocity trajectory of the
conveyor belt due to more switchings in the sliding mode. Note that increasing the control period
decreases control robustness with respect to perturbations in system (1). Here robustness means
preserving the range of values and control structure under perturbations in the system.

The parameters of all the designed angular position controllers are found using a reinforcement
learning procedure based on an evolutionary optimization algorithm (differential evolution). The
loss function for model (1) is obtained in the following steps: 1) setting the controller parameters;
2) calculating n trajectories (in the example below, n = 3) of the system with a particular controller;
3) calculating the mean value of (6) for the n trajectories. The topologies for the feedforward and
recurrent neural networks were selected by computational experiments with limited training time.
For the (feedforward and recurrent) neural network controllers, the tangential activation function
in the hidden layer shows the best results in terms of the smallest mean value of (6). The control
signal for the controllers is amplified and filtered as follows: for neural network controllers, the gain
ν = 100 is applied; for the PID controller, all values uα /∈ (−100, 100) are truncated.

A computer program was developed to numerically simulate the dynamics of the controlled
model (1) with the designed controllers. The results of the computational experiments are presented
below.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024
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4. THE RESULTS OF COMPUTATIONAL EXPERIMENTS

The developed controllers were parametrically optimized using algorithms based on reinforce-
ment learning. The simulation results are shown in Figs. 4–8. First, we consider the results of
computational experiments using the PID controller. The initial conditions and initial parameters
are (x; p;α;ω) = (0; 0; 0.5; 0) and (m0;m; k; g; c; ε; τ) = (0.1; 1.5; 0.5; 9.8; 0.5; 1; 10), respectively.
The case of the smooth loading and instantaneous unloading of the belt is studied in the compu-
tational experiments.

The trajectories in Figs. 3 and 4 correspond to five runs of system (1) with the same parameters
but different switching events.

Fig. 3. The linear velocity of the belt for model (1) with the sliding mode controller and PID controller.

Fig. 4. The set of trajectories of system (1) with the PID controller.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024
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Fig. 5. The control function for the PID controller.

Fig. 6. The set of trajectories and control function for system (1) with the neural network controller.

Figure 3 illustrates linear velocity stabilization with single deviations due to cargo loading and
unloading. The set of oscillatory trajectories in Fig. 4a has mean values tending to λ. Next, Fig. 4b
presents the plots of the angular velocity of the conveyor belt; the deviations due to cargo loading
and unloading can also be observed. According to Fig. 4c, the resulting trajectories have variability
with respect to the occurrence of mode-switching events. In Fig. 4d, the reader can see the jump
changes due to a one-step change in the momentum of system (1) during unloading.

Note that the conditions of Theorem 1 hold for the PID controller under the chosen factors
of the computational experiment, but there is a control deficit with the impossibility of obtaining
stable negative feedback in the control loop.

Figure 5 shows the plot of uα(t) for the PID controller. According to Fig. 5, the control function
is located above the abscissa axis, and the points of avoidable discontinuities are tracked.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024
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Fig. 7. The set of trajectories and control function for system (1) with the recurrent neural network controller.

Next, we consider simulation results for the dynamics of system (1) with the feedforward neural
network controller. Figure 6 provides the results of five runs of system (1) as well as the plot of
the control function.

According to the results, the neural network controller exhibits a significantly higher control
performance level for model (1) compared to the PID controller. In Figs. 6a and 6b, the deviations
from λ during cargo loading and unloading are significantly smaller; however, Fig. 6c shows a
repeatable transient pattern regardless of the external conditions for the recurrent neural network
controller. The plots of the linear velocity and momentum under the neural network controller are
similar in nature to those in Figs. 3 and 4d, respectively. Note that for small negative values of the
error, there is a feedback deficit, and the conditions of Theorem 1 also hold for the neural network
controller.

The plot of the control function with the neural network controller differs from that with the
PID controller by the presence of negative values and segments of constant positive control values,
which indicates more pronounced feedback.

The simulation results with the application of the recurrent neural network controller are pre-
sented in Fig. 7.

According to Figs. 7a and 7b, the recurrent neural network controller demonstrates the highest
control performance level for the angular position of the conveyor system compared to the previously
considered controllers. The system dynamics is close to stationary near the expected equilibrium;

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024
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Fig. 8. The set of trajectories and control function for system (1) with the recurrent neuro-PID controller.

see the angular position plot. An insignificant scatter of the trajectories is due to cargo loading
and unloading. The plots of the linear velocity and momentum under the recurrent neural network
controller are similar in character to those obtained under the PID controller and the feedforward
neural network controller. Figure 7c illustrates a slight variability associated with cargo loading
and unloading. The plot of the control function with the recurrent neural network controller is
provided in Fig. 7d. The transient has high-frequency oscillations, gradually being replaced by
stationary modes with dominating small constant control values.

Next, Fig. 8 shows the simulation results for the recurrent neuro-PID controller.

According to Figs. 8a and 8b, the recurrent neuro-PID controller demonstrates a relatively low
control performance level compared to the PID, neural network, and recurrent neural network
controllers. There is a significant feedback deficit, and the system trajectories move considerably
away from λ during cargo loading and unloading. Figure 8c illustrates the variability of the con-
veyor system trajectories during cargo loading and unloading. The plots of the linear velocity and
momentum under the recurrent neuro-PID controller are similar to those obtained under the PID
controller.

The long-lasting high-frequency oscillations of the control function in Fig. 8e indicate self-
excitation in the feedback loop and a low level of control robustness. Nevertheless, the conditions
of Theorem 1 are fulfilled with the application of the recurrent neuro-PID controller.
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5. COMPARATIVE ANALYSIS OF THE PERFORMANCE OF DESIGNED CONTROLLERS

The mean values of the optimality criteria and the weighted mean error values are given in the
table below. Note that the criterion C2 can be found for each controller under consideration, but
its informativeness will be reduced in the case of no data on the global stabilizability of the system.

Mean values of optimality criteria and mean error for different controllers

Controller C1 C2 Mean(e(t))

PID controller 1.7412 0.3654 0.0022

Neural network controller 0.4906 0.1333 −0.0033

Recurrent neural network controller 0.3632 0.0597 −0.0012

Neuro-PID controller 1.2762 0.6517 0.0648

According to this table, the recurrent neural network controller demonstrates the highest per-
formance level (the lowest values of all the three indicators). Also, we emphasize the different
maximum performance levels of the controllers when implemented as computer programs. Per-
formance measurements using the BenchmarkTools library are presented in Figs. 9–11. (The PC
configuration is CPU AMD Ryzen 5 5600X and RAM 16GB.)

Fig. 9. Performance measurements for the PID controller.

Fig. 10. Performance measurements for the neural network controller.

Fig. 11. Performance measurements for the neuro-PID controller.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024
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In Figs. 9–11, “min . . .max” and “median” indicate the range of the execution time and the
median execution time, respectively; “mean ±σ” and GC correspond to the mean time with the
standard deviation and the percentage effect on the time when collecting garbage. Obviously, the
PID controller exhibits a significantly higher maximum performance level than the neural network
and neuro-PID controllers. However, all types of the controllers have a maximum performance level
of at least one million counts per second in the PC configuration.

The performance of the designed controllers is essential when implementing them as embedded
devices and increasing the efficiency of reinforcement learning algorithms.

6. DISCUSSION OF THE RESULTS

Within this work, we estimated the influence of the integration step and control period on
the calculation accuracy and the effectiveness of the designed controllers. Based on the results
of preliminary experiments, we chose suitable values for the integration step and control period.
With the chosen integration step, some effects were revealed concerning the simulation accuracy
of the controlled conveyor system. The control structure for the neural network controller can be
visualized by a heat map since this controller has no integral component. The heat map is shown
in Fig. 12.

According to Fig. 12, the control values for the neural network controller form two domains with
values −1 and 1 separated by a curvilinear boundary with an illegible transition. This boundary
forms the admissible values of the control variable (see Fig. 6d), which indicates that the values e
and ė belong to this boundary under effective control.

The results of computational experiments provided in Figs. 3–8 show that the recurrent neural
network controller is the most efficient among the designed ones; see the lowest values of C1 and C2

in the table. The feedforward neural network controller also demonstrates a quite high performance
level compared to the PID and neuro-PID controllers but is characterized by higher values of C1

and C2 than the recurrent neural network controller. The PID controller has limited ability to
stabilize system (1) since fast loading and unloading events cause a long transient, destabilizing
the system dynamics. The neuro-PID controller is insufficiently effective in stabilizing system (1):
the mean error has a large positive value of (mean(e(t)) = 0.05), indicating a control deficit even
in the absence of destabilizing events. However, the mean value of C1 for the neuro-PID controller
is lower than that for the PID controller.

The stabilization conditions proposed in Theorems 1 and 2 were used to interpret the operation
of the PID controller and the neural network controllers of different types for system (1). These
conditions can serve as a methodological support for further research in the development of new
algorithms and design of new intelligent controllers.

Fig. 12. Heat map of neural network controller values.
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The computational experiments were carried out by software on Julia. The software was de-
veloped using the DifferentialEquations, Plots, and BlackBoxOptim libraries as well as an original
library for neural network calculations.

7. CONCLUSIONS

This paper has developed an approach to modeling and stabilization of conveyor transport sys-
tems with intelligent control. The mathematical model of a controlled belt conveyor with a variable
elevation angle has been formally described. The problem of optimal control of the belt movement
and angular position of the conveyor has been formulated and solved in practically important special
cases. The stabilization conditions of this model have been developed considering the simulation
components responsible for the logic of conveyor belt loading and unloading. The algorithmic and
intelligent controllers have been designed and the conditions for carrying out computational exper-
iments have been chosen to interpret the results and describe new qualitative effects for technical
conveyor transport systems.

According to the results of this study, the neural network controllers of different types have
significant adaptive control possibilities for the conveyor transport model with switching. In par-
ticular, these controllers adapt to the change of the gain in the control loop and to the change of
the control period ∆t, stabilizing system (1). In addition, an important aspect is that the highest
training effectiveness of the neural network is achieved for a sufficiently small gain, and further
increasing its value after training improves the control quality. Unlike the PID controller, the neu-
ral network of the nonrecurrent type does not contain integral error components but successfully
controls system (1).

The results of comparing the performance of the intelligent and algorithmic controllers proposed
above can be used in the design and optimization of new conveyor transport systems as well as
other types of controlled technical systems. Promising lines of further research in the area include
the construction and analysis of models of more complex controlled conveyor systems with dynamic
positioning (e.g., models of multilink conveyor systems or conveyor systems with a moving base).
In addition, the model can be generalized to expand the simulation part and improve the switching
logic; new types of hybrid intelligent controllers can be designed to achieve higher effectiveness and
performance.
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